Aprendizaje reforzado en sistemas de control

Dr.-Ing. Miguel A. Solis

Track Infonor & Tecnologías Emergentes INFONOR-CHILE

05 Septiembre de 2018

Contenido

Marco teórico

Teoría de control Aprendizaje reforzado

Definición del problema

Controlador de realimentación de estado Realimentación dinámica del estado

Control adaptivo

Policy Iteration
Control adaptivo con dinámica desconocida

Conclusiones

Modelo del sistema

Versión lineal de una ecuación de diferencias:

$$y[k+n] + a_{n-1}y[k+n-1] + \dots + a_0y[k] = b_mu[k+m] + \dots + b_0u[k],$$

por medio del operador de adelanto se obtiene

$$x[k+1] = Ax[k] + Bu[k],$$

$$y[k] = Cx[k] + Du[k],$$

Estabilidad

El análisis de estabilidad depende del criterio que se considere:

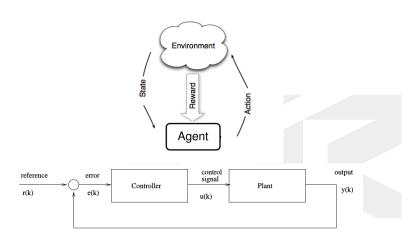
- Asintótica
- ► BIBO (Entrada acotada Salida acotada)
- ► MSS (Estabilidad cuadrática media)

MSS

El sistema es estable en sentido cuadrático medio si y sólo si, para cualquier x_0 y u con v, existe $\mu_x \in \mathbb{R}^{n_x}$ y $M_x \in \mathbb{R}^{n_x \times n_x}$, $M_x \ge 0$, tal que

$$\begin{split} & \lim_{k \to \infty} \xi\{x[k]\} = \mu_{\mathrm{X}}, \\ & \lim_{k \to \infty} \xi\{x[k]x[k]^{\mathrm{T}}\} = M_{\mathrm{X}}. \end{split}$$

Esquema de realimentación



Problema de aprendizaje reforzado

Se formula como un MDP, compuesto por la tupla (X,U,T,R) donde

- ► X: corresponde al conjunto de todos los posibles estados.
- ▶ U: denota el conjunto de acciones que el agente puede tomar.
- ▶ T: $X \times U \times X \rightarrow [0,1]$ es una función de transición de estado, que asigna una probabilidad de ser transferido desde el estado x al estado x' por medio de ejecutar u.
- $lacktriangleq R\colon X\times U \to \mathbb{R}$ corresponde a una función (escalar) de recompensas.
- lacktriangledown $\pi\colon X o U$ es un mapeo de estados a acciones, describiendo la política (acciones a tomar en ciertos estados).

Función de valor

La calidad de cierta política π se cuantifica a través de la función de valor $V^{\pi}(x_k)$, definida como la recompensa acumulada (esperada) desde cierto estado x en el instante k:

$$V^{\pi}(x_k) = \xi\{\sum_{i=0}^{\infty} \gamma^i r_{k+i} | \pi\},\,$$

donde $\gamma \in [0,1)$ corresponde al factor de descuento.

Política óptima

 π^* se dice óptima, si satisface la siguiente expresión:

$$V^{\pi^*}(x) \ge V^{\pi}(x), \quad \forall x, \pi$$

Expresión de optimalidad de Bellman

La política óptima π^* satisface

$$V^*(x) = \max_{u \in U} \sum_{x' \in X} Pr\{(x, u, x')\} (R(x, u) + \gamma V^*(x')),$$

Policy Iteration

1:
$$\hat{\pi}_0(s) = \operatorname{acción aleatoria}$$

 $\forall s \in \mathcal{S}$

2:
$$\hat{V}_0(s) = 0 \quad \forall s \in \mathcal{S}$$

 $2: V_0(s) = 0 \qquad \forall s \in c$

3: evaluar_politica()

4: mejorar_politica()

▷ arbitrariamente

Policy Iteration

evaluar_politica():

```
1: k = 0

2: while \Delta > \epsilon do

3: for s \in \mathcal{S} do

4: \hat{V}_{k+1}(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} Pr\{(s, a, s')\} (R(s, a) + \gamma V(s'))

5: end for

6: \Delta = \|\hat{V}_{k+1} - \hat{V}_k\|

7: k = k + 1

8: end while
```


Policy Iteration

mejorar_politica() :

```
1: politica_estable = true
2: k = 0
 3: for s \in \mathcal{S} do
4: \hat{\pi}_{k+1}(s) = argmax_{a \in A} \sum_{s' \in S} Pr\{(s, a, s')\} (R(s, a) + \gamma V(s'))
 5: if \hat{\pi}_k(s) \neq \hat{\pi}_{k+1}(s) then
 6: politica_estable = false
 7: end if
8: end for
 9: if politica_estable then
10: return \hat{\pi}_k
11: else
12: evaluar_politica()
13: end if
```


Función de valor óptima

Pueden existir múltiples políticas óptimas, pero la función de valor óptima es única:

$$V^*(x[k]) = \max_{u \in \mathcal{U}} \sum_{x[k+1]} \Pr\{(x[k], u[k], x[k+1])\} (R(x[k], u[k]) + \gamma V^*(x[k+1])),$$

Función de valor estado-acción óptima

La función de valor óptima V^* se relaciona con la función de valor estado-acción óptima Q^* como

$$V^*(x[k]) = \max_{u \in \mathcal{U}} Q^*(x[k], u[k]).$$

TD(0)

- 1: $\hat{V}(x[0]) = 0 \quad \forall x \in \mathcal{X}$
- 2: **for** k = 1, 2, ..., n **do**
- 3: **Observar** x[k], R(x[k], u[k]), x[k+1]

4:
$$\hat{V}(x[k]) = \hat{V}(x[k]) + \alpha \left(R(x[k], u[k]) + \gamma \hat{V}(x[k+1]) - \hat{V}(x[k]) \right)$$

- 5: end for
- 6: retornar \hat{V}

Q-learning

1:
$$\hat{Q}(x[0], u[0]) = 0 \quad \forall x \in \mathcal{X}, \quad u \in \mathcal{U}$$

- 2: **for** k = 1, 2, ..., n **do**
- 3: **Observar** x[k], u[k], R(x[k], u[k]), x[k+1]
- 4: $\hat{Q}(x[k], u[k]) = \hat{Q}(x[k], u[k]) + \alpha \left(R(x[k], u[k]) + \gamma \max_{u[k+1]} \hat{Q}(x[k+1], u[k+1]) \hat{Q}(x[k], u[k]) \right)$
- 5: end for
- 6: **retornar** \hat{Q}

Entonces, suponiendo $\hat{Q}=Q^*$, la acción óptima para cada estado se puede computar fácilmente mediante una operación simple de maximización

$$\pi^*(x[k]) = \arg \max_{u[k]} Q^*(x[k], u[k]),$$

Representación en espacio de estados

Para modelos de tiempo discreto, la representación en espacio de estados viene dada por

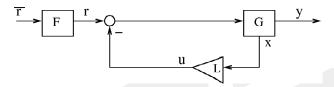
$$x[k+1] = Ax[k] + Bu[k] + v[k],$$

 $y[k] = Cx[k] + w[k],$

Suposiciones

- ► El estado inicial $x[0] = x_0$ es una variable aleatoria de segundo orden con media $\mu_{x,0}$ y varianza $P_{x,0} \ge 0$.
- ▶ La entrada *u* se caracteriza en términos del estado *x*.
- ► El ruido v es una secuencia de ruido blanco de media cero no correlacionado con x_0 , y varianza $P_v \ge 0$.

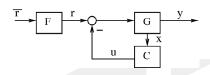
Realimentación de estado



▶ para seguimiento de trayectoria:

$$F = -\left(C(A - BL - I)^{-1}B\right)^{-1}.$$

Modelo



$$x_c[k+1] = A_c x_c[k] + B_c x[k],$$

 $u[k] = C_c x_c[k] + D_c x[k],$

Prefiltro

Entonces, el prefiltro viene dado por

$$F = -\left(C\left(A - I - BD_c + BC_c\left(A_c - I\right)^{-1}B_c\right)^{-1}B\right)^{-1}$$

MSS

Un controlador MSS estabilizará (en sentido cuadrático medio) la planta si y solo si los autovalores de \bar{A} están dentro del circulo unitario, donde \bar{A} es una matriz por bloques dada por

$$\bar{A} = \left[\begin{array}{cc} A - BD_c & -BC_c \\ B_c & A_c \end{array} \right].$$

MSS con observador

Introduciendo un observador K:

$$\bar{\bar{A}} = \begin{bmatrix} A - KC & 0_{nx \times nx_c} & 0_{nx \times nx} \\ -B_c & A_c & B_c \\ BD_c & -BC_c & A - BD_c \end{bmatrix}.$$

Simulación

► Considere el sistema:

$$A = \begin{bmatrix} 0.5 & 0 \\ 0.7 & 1.2 \end{bmatrix},$$

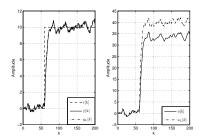
$$B = \begin{bmatrix} 0 \\ 0.1 \end{bmatrix},$$

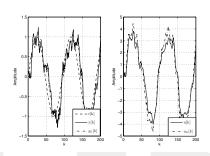
$$C = \begin{bmatrix} 1 & 1 \end{bmatrix}.$$

▶ y el controlador:

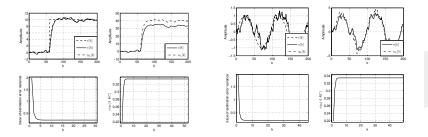
$$A_c = 0.4$$
 $B_c = \begin{bmatrix} 1 & -1.52 \end{bmatrix}$,
 $C_c = -0.5$ $D_c = \begin{bmatrix} 0.3 & 2.1 \end{bmatrix}$.

Simulación (mediciones completas)





Simulación (con observador)



LQT

El desempeño es medido por

$$J[k] = \xi \{ \sum_{i=k}^{\infty} \gamma^{i-k} \left(z^{\mathsf{T}}[i] Q_{a} z[i] + u^{\mathsf{T}}[i] R u[i] \right) \},$$

con

$$z[k] = \begin{bmatrix} (r[k] - y[k]) \\ x_c[k] \end{bmatrix}, \quad Q_a = \begin{bmatrix} Q_1 & 0 \\ 0 & Q_2 \end{bmatrix},$$

donde ambos Q_1 y Q_2 son matrices definidas positivas, penalizando el error de control y evitando que la dinámica del mismo controlador crezca sin cota respectivamente.

Formulación

Para que el problema de LQT parezca más un problema de aprendizaje reforzado, defina la función de valor $V\left(X[k]\right)$ como

$$V\left(X[k]\right) = -J[k],$$

donde X[k] corresponde al vector de estado aumentado que contiene al estado interno del proceso a controlar.

Función de valor

Entonces, la función de valor puede ser escrita como

$$V(X[k]) = \xi \{ \sum_{i=k}^{\infty} \gamma^{i-k} (tr(P_w Q_1) + X^{T}[i]\bar{Q}X[i] + u^{T}[i]Ru[i]) \},$$

con Q_1 como se definió anteriormente, y $ar{Q}$ dado por

$$ar{Q} = \left[egin{array}{cccc} C^\intercal Q_1 C & 0 & -C^\intercal Q_1 \\ 0 & Q_2 & 0 \\ -Q_1 C & 0 & Q_1 \end{array}
ight].$$

Función de valor óptima

Entonces, suponiendo que la función de valor óptima es cuadrática en términos del vector de estado aumentado, i.e.,

$$V^*(X[k]) = X^{\mathsf{T}}[k]PX[k] + g[k],$$

para alguna matriz simétrica y estacionaria P>0, y g[k] tal que

$$g[k+1] = \left(\frac{1}{\gamma}\right)g[k] + tr\left(\frac{1}{\gamma}P_wQ_1 + P_vP_{11}\right),$$

Los parámetros (T_r, C_c, D_c) vendrán dados por

$$T_r = \gamma Z^{-1} B^{\mathsf{T}} P_{13} F,$$

$$C_c = -\gamma Z^{-1} B^{\mathsf{T}} P_{12} A_c,$$

$$D_c = -\gamma Z^{-1} M,$$

con

$$Z = (R + \gamma B^{T} P_{11} B),$$

$$M = (A^{T} P_{11} B + B_{c}^{T} P_{21} B),$$

Ecuaciones algebraicas de Riccatti

$$\begin{split} P_{11} &= C^{\mathsf{T}} Q_{1} C + \gamma \left(A^{\mathsf{T}} P_{11} A + B_{c}^{\mathsf{T}} P_{21} A \right. \\ &\quad + A^{\mathsf{T}} P_{12} B_{c} + B_{c}^{\mathsf{T}} P_{12} B_{c} \right) - \gamma^{2} M Z^{-1} M^{\mathsf{T}}, \\ P_{12} &= \gamma \left(A^{\mathsf{T}} P_{12} A_{c} + B_{c}^{\mathsf{T}} P_{22} A_{c} \right) - \gamma^{2} M Z^{-1} B^{\mathsf{T}} P_{12} A_{c}, \\ P_{22} &= Q_{2} + \gamma A_{c}^{\mathsf{T}} P_{22} A_{c} - \gamma^{2} A_{c}^{\mathsf{T}} P_{21} B Z^{-1} B^{\mathsf{T}} P_{12} A_{c}, \\ P_{13} &= -C^{\mathsf{T}} Q_{1} + \gamma \left(A^{\mathsf{T}} P_{13} F + B_{c}^{\mathsf{T}} P_{23} F \right) \\ &\qquad \qquad - \gamma^{2} M Z^{-1} B^{\mathsf{T}} P_{12} F, \\ P_{23} &= \gamma A_{c}^{\mathsf{T}} P_{23} F - \gamma^{2} A_{c}^{\mathsf{T}} P_{21} B Z^{-1} B^{\mathsf{T}} P_{13} F, \end{split}$$

donde $P_{ij} = P_{ji}^{\mathsf{T}}$, como consecuencia de la simetría de P.

PI con dinámica conocida

- 1: **(Evaluación de política)** Resuelva para cada variable del lado izquierdo de la ARE, en base a los datos de la iteración anterior, es decir:
- 2: (Mejora de política) Actualizar los parámetros A_c y B_c con estas nuevas soluciones, tal que

$$\bar{\lambda} \left(\left[\begin{array}{cc} \bar{A}_{11}^{(I)} & \bar{A}_{12}^{(I)} \\ B_c^{(I)} & A_c^{(I)} \end{array} \right] \right) < 1,$$

donde

$$\begin{split} \bar{A}_{11}^{(I)} &= A - \gamma B Z^{-1,(I)} \left(A^{\mathsf{T}} P_{11}^{(I)} B + B_c^{(I)} P_{21}^{(I)} B \right), \\ \bar{A}_{12}^{(I)} &= -\gamma B Z^{-1,(I)} B^{\mathsf{T}} P_{12}^{(I)} A_c^{(I)}, \\ Z^{(I)} &= \left(R + \gamma B^{\mathsf{T}} P_{11}^{(I)} B \right). \end{split}$$

PI con dinámica conocida

Entonces, el resto de los parámetros se actualizan como

$$T_r^{(I)} = \gamma Z^{-1,(I)} B^{\mathsf{T}} P_{13}^{(I)} F,$$

$$C_c^{(I)} = -\gamma Z^{-1,(I)} B^{\mathsf{T}} P_{12}^{(I)} A_c^{(I)},$$

$$D_c^{(I)} = -\gamma Z^{-1,(I)} \left(A^{\mathsf{T}} P_{11}^{(I)} B + B_c^{\mathsf{T},(I)} P_{21}^{(I)} B \right).$$

Función Q para LQT

Considere la función Q para LQT dada por

$$Q(X[k], u[k]) = X^{T} \bar{Q} X[k] + u^{T}[k] R u[k] + tr(P_{w} Q_{1}) + \gamma (X^{T}[k+1] P X[k+1] + g[k+1]),$$

Función Q para LQT

que es equivalente a

$$Q(X[k], u[k]) = \begin{bmatrix} X[k] \\ u[k] \end{bmatrix}^{\mathsf{T}} H \begin{bmatrix} X[k] \\ u[k] \end{bmatrix} + tr(P_wQ_1 + \gamma P_v P_{11}) + \gamma g[k+1],$$

con H simétrica dada por

$$H = \left[\begin{array}{cc} H_{xx} & H_{xu} \\ H_{ux} & H_{uu} \end{array} \right],$$

Función Q para LQT

donde

$$H_{uu} = R + \gamma B^{\mathsf{T}} P_{11} B,$$

$$H_{xu} = \gamma \begin{bmatrix} B^{\mathsf{T}} P_{11} A + B^{\mathsf{T}} P_{12} B_c \\ B^{\mathsf{T}} P_{12} A_c \\ B^{\mathsf{T}} P_{13} F \end{bmatrix},$$

Ley de control

Entonces, encontrando las raíces de la primera derivada, se puede obtener la ley de control en términos de H dada por

$$u[k] = -H_{uu}^{-1}H_{ux}X[k].$$

Función Q para LQT

Sea S[k] dado por

$$S[k] = \begin{bmatrix} 1 \\ X[k] \\ u[k] \end{bmatrix},$$

con la función Q para LQT equivalente a

$$Q(X[k], u[k]) = S^{\mathsf{T}}[k]\bar{H}S[k],$$

Ecuación de optimalidad de Bellman

con \bar{H} dado por

$$\bar{H} = \begin{bmatrix} tr(P_wQ_1 + \gamma P_v P_{11}) + \gamma g[k+1] & 0 & 0 \\ 0 & H_{xx} & H_{xu} \\ 0 & H_{ux} & H_{uu} \end{bmatrix},$$

llevando a

$$S^{\mathsf{T}}[k]\bar{H}S[k] = X^{\mathsf{T}}[k]\bar{Q}X[k] + u^{\mathsf{T}}[k]Ru[k] + \gamma S^{\mathsf{T}}[k+1]\bar{H}S[k+1].$$

PI con dinámica desconocida

1: **(Evaluación de política)** En base a las observaciones de S[k], S[k+1] y $(X^{\mathsf{T}}[k]\bar{Q}X[k] + u^{\mathsf{T},(l)}[k]Ru^{(l)}[k])$ para la l-ésima iteración, usar regresión para encontrar \bar{H} ,

$$S^{T}[k]\bar{H}^{(l+1)}S[k] = X^{T}[k]\bar{Q}X[k] + u^{T,(l)}[k]Ru^{(l)}[k] + \gamma S^{T}[k+1]\bar{H}^{(l+1)}S[k+1].$$

2: (Mejora de política) Actualizar la ley de control

$$u^{(l+1)}[k] = -(H_{uu}^{-1})^{(l+1)} H_{ux}^{(l+1)} X[k].$$

Simulación

Considere el sistema lineal dado por

$$x[k+1] = \begin{bmatrix} 0.5 & 0 \\ 0.7 & 1.2 \end{bmatrix} x[k] + \begin{bmatrix} 0 \\ 0.1 \end{bmatrix} u[k] + v[k],$$
$$y[k] = \begin{bmatrix} 1 & 1 \end{bmatrix} x[k] + w[k],$$

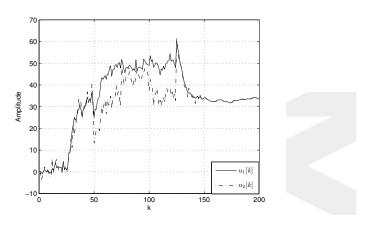
Simulación

Se fija arbitrariamente un modelo para el generador F de la señal de referencia

$$F[k] = \begin{cases} 0 & k < 30 \\ 10 & k \ge 30 \end{cases}$$

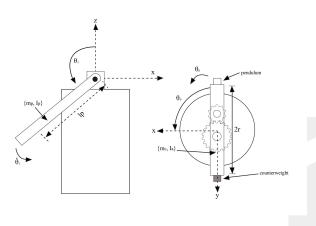
y r[0]=1. Además, se establecen los pesos de penalización para el índice de desempeño en $Q_1=5$, $Q_2=5$ and R=1, y el factor de descuento $\gamma=0.8$.

Simulación

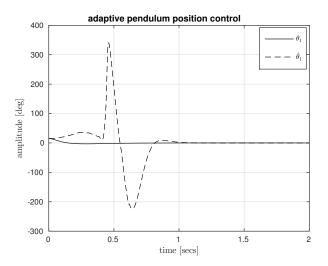


 u_1 y u_2 : PI con dinámica conocida y desconocida respectivamente.

Péndulo de Furuta



Enfoque adaptivo



Por simulación:

Solución de ARE

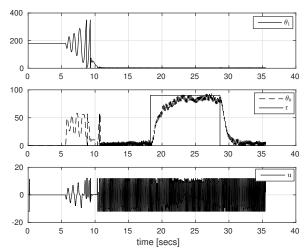
Solución analítica de la ARE respectiva:

con la correspondiente obtenida a través de aprendizaje

$$\begin{bmatrix} 0 & ,0001 & -,0014 & -,0002 & 0 \\ 0 & -,0999 & 1,2757 & ,1634 & ,0028 \\ -,0001 & ,3407 & -4,3501 & -,5572 & -,0097 \\ 0 & ,1281 & -1,6356 & -,2095 & -,0037 \\ 0 & 0 & -,0003 & 0 & 0 \end{bmatrix} \cdot 10^{10}.$$

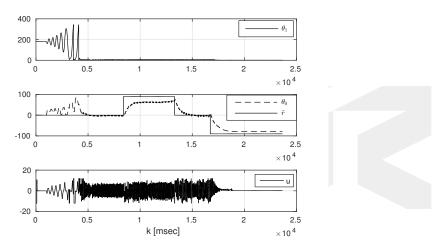
Control conmutado

Levantamiento y realimentación (clásica) de estado:



Control conmutado

Levantamiento y realimentación dinámica de estado:



Conclusiones

- ► Problema de control formulado como MDP
- ► Controlador con realimentación de estado agrega más parámetros, pero no afectan en un enfoque libre de modelos
- Enfoque adaptivo es útil cuando se conoce el modelo, pero más aún con dinámica desconocida

Algunas referencias

- ► R. Sutton and A. Barto Introduction to reinforcement learning, 1998.
- ▶ D. Bertsekas **Dynamic programming and optimal control**, 1995.
- ▶ B. Kiumarsi, F.L.Lewis, H. Modares, A. Karimpour and M-B. Naghibi-Sistani Reinforcement Q-learning for optimal tracking control of linear discrete-time systems with unknown dynamics, Automatica, 2014.
- ▶ M.A. Solis, M. Olivares and H. Allende. Stabilizing Dynamic State Feedback Controller Synthesis: A Reinforcement Learning Approach, Studies in Informatics and Control, 2016.

Q & A

Preguntas

